Sparse Multi-Shell Diffusion Imaging
نویسندگان
چکیده
Diffusion magnetic resonance imaging (dMRI) is an important tool that allows non-invasive investigation of neural architecture of the brain. The data obtained from these in-vivo scans provides important information about the integrity and connectivity of neural fiber bundles in the brain. A multi-shell imaging (MSI) scan can be of great value in the study of several psychiatric and neurological disorders, yet its usability has been limited due to the long acquisition times required. A typical MSI scan involves acquiring a large number of gradient directions for the 2 (or more) spherical shells (several b-values), making the acquisition time significantly long for clinical application. In this work, we propose to use results from the theory of compressive sampling and determine the minimum number of gradient directions required to attain signal reconstruction similar to a traditional MSI scan. In particular, we propose a generalization of the single shell spherical ridgelets basis for sparse representation of multi shell signals. We demonstrate its efficacy on several synthetic and in-vivo data sets and perform quantitative comparisons with solid spherical harmonics based representation. Our preliminary results show that around 20-24 directions per shell are enough for robustly recovering the diffusion propagator.
منابع مشابه
Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging
Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conver...
متن کاملSparse and Optimal Acquisition Design for Diffusion MRI and Beyond
PURPOSE Diffusion magnetic resonance imaging (MRI) in combination with functional MRI promises a whole new vista for scientists to investigate noninvasively the structural and functional connectivity of the human brain-the human connectome, which had heretofore been out of reach. As with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-consuming. Furthe...
متن کامل7T multi-shell hybrid diffusion imaging (HYDI) for mapping brain connectivity in mice
Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. High angular resolution diffusion imaging (HARDI) samples diffusivity at a large number of spherical angles, to better resolve neural fibers that mix or cross. Here, we implemented a framework for advanced mathematical analysis of mouse 5-shell HARDI (b=1000, 3000, 4000, 8000, 12000 s/mm2), al...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملUnsupervised multi-tissue decomposition of single-shell diffusion-weighted imaging by generalization to multi-modal data
Introduction In recent years, data-driven analysis of diffusion-weighted imaging (DWI) has been extended beyond white matter (WM), explicitly modelling partial voluming with adjacent tissues. Supervised methods such as singleand multi-tissue constrained spherical deconvolution (CSD) reconstruct orientation distribution functions (ODF) of WM, grey matter (GM), and cerebrospinal fluid (CSF), give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 14 Pt 2 شماره
صفحات -
تاریخ انتشار 2011